Search results for "NADH-Ubiquinone Oxidoreductase"
showing 3 items of 3 documents
New evidence for the multiplicity of ubiquinone- and inhibitor-binding sites in the mitochondrial complex I.
2000
Determination of the number of ubiquinone- and inhibitor-binding sites in the mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a controversial question with a direct implication for elaborating a suitable model to explain the bioenergetic mechanism of this complicated enzyme. We have used combinations of both selective inhibitors and common ubiquinone-like substrates to demonstrate the multiplicity of the reaction centers in the complex I in contrast with competition studies that have suggested the existence of a unique binding site for ubiquinone. Our results provide new evidence for the existence of at least two freely exchangeable ubiquinone-binding sites with different specif…
Mitochondrial complex I: new insights from inhibitor assays
2000
The NADH:ubiquinone oxidoreductase (complex I) of the mitochondrial respiratory chain is by far the most complicated of the proton-translocating enzymes involved in the oxidative phosphorylation. Many clues regarding both electron transfer and proton translocation are still unknown. In this sense, inhibitor assays are relevant and useful pieces for elaborating a suitable model to explain the elusive bioenergetic mechanism of this enzyme. This short review presents the most recent advances in inhibitor studies and highlights the major controversies.
Kinetic characterization of mitochondrial complex I inhibitors using annonaceous acetogenins
1999
The NADH:ubiquinone oxidoreductase (complex I) of the mitochondrial respiratory chain is by far the largest and most complicated of the proton-translocating enzymes involved in the oxidative phosphorylation. Many clues regarding the electron pathways from matrix NADH to membrane ubiquinone and the links of this process with the translocation of protons are highly controversial. Different types of inhibitors become valuable tools to dissect the electron and proton pathways of this complex enzyme. Therefore, further knowledge of the mode of action of complex I inhibitors is needed to understand the underlying mechanism of energy conservation. This study presents for the first time a detailed …